Substitution Reactions

DID YOU EVER WONDER . . .
what chemotherapy is?

As its name implies, chemotherapy is the use of chemical agents in the treatment of cancer. The picture below shows a cancer cell (red) surrounded by many smaller cells (green) that scientists have filled with a cocktail of chemotherapeutic agents. These smaller cells have been engineered to function as transport vehicles that will deliver their cargo to the cancer cell. Dozens of chemotherapy drugs are currently in clinical use, and researchers around the world are currently working on the design and development of new drugs for treating cancer. The primary goal of most chemotherapeutic agents is to cause irreparable damage to cancer cells while causing only minimal damage to normal, healthy cells. Since cancer cells grow much faster than most other cells, many anticancer drugs have been designed to interrupt the growth cycle of fast-growing cells. Unfortunately, some healthy cells are also fast growing, such as hair follicles and skin cells. For this reason, chemotherapy patients often experience a host of side effects, including hair loss and rashes.

The field of chemotherapy began in the mid-1930s, when scientists realized that a chemical warfare agent (sulfur mustard) could be modified and used to attack tumors. The action of sulfur mustard (and its derivatives) was thoroughly investigated and was found to involve a series of reactions called substitution reactions. Throughout this chapter, we will explore many important features of substitution reactions. At the end of the chapter, we will revisit the topic of chemotherapy by exploring the rational design of the first chemotherapeutic agents.
DO YOU REMEMBER?

Before you go on, be sure you understand the following topics.
If necessary, review the suggested sections to prepare for this chapter.

- The Cahn-Ingold-Prelog System (Section 5.3)
- Kinetics and Energy Diagrams (Sections 6.5, 6.6)
- Nucleophiles and Electrophiles (Section 6.7)
- Arrow Pushing and Carbocation Rearrangements (Sections 6.8–6.11)

Visit www.wileyplus.com to check your understanding and for valuable practice.

7.1 Introduction to Substitution Reactions

Substitution reactions involve the exchange of one functional group for another:

\[X \rightarrow Y \]

In every substitution reaction, there is an electrophile and a nucleophile:

![Electrophile](chlorine.png) + ![Nucleophile](sulfur.png) → ![Electrophile](sulfur.png) + ![Nucleophile](chlorine.png)

Organic chemists often use the term **substrate** when referring to the electrophile in a substitution reaction. In order for an electrophile to function as a substrate in a substitution reaction, it must contain a **leaving group**, which is a group capable of separating from the substrate. In the example above, chloride functions as the leaving group. A leaving group serves two critical functions:

1. The leaving group withdraws electron density via induction, rendering the adjacent carbon atom electrophilic. This can be visualized with electrostatic potential maps of various methyl halides (Figure 7.1). In each image, the blue color indicates a region of low electron density.

![Electrostatic potential maps](methyl_halides.png)

FIGURE 7.1
Electrostatic potential maps of methyl halides.

2. The leaving group can stabilize any negative charge that may develop as the result of the leaving group separating from the substrate:

\[\text{Stabilized charge} \]

Halogens (Cl, Br, and I) are very common leaving groups.
7.2 Alkyl Halides

Halogenated organic compounds are commonly used as electrophiles in substitution reactions. Although other compounds can also serve as electrophiles, we will focus our attention for now on compounds containing halogens.

Naming Halogenated Organic Compounds

Recall from Section 4.2 that systematic (IUPAC) names of alkanes are assigned using four discrete steps:

1. Identify and name the parent.
2. Identify and name the substituents.
3. Number the parent chain and assign a locant to each substituent.
4. Assemble the substituents alphabetically.

The same exact four-step procedure is used to name compounds that contain halogens, and all of the rules discussed in Chapter 4 apply here as well. Halogens are simply treated as substituents and receive the following names: fluoro-, chloro-, bromo-, and iodo-. Below are two examples:

\[
\begin{align*}
\text{Cl} & \quad 2\text{-chloropropane} \\
\text{Br} & \quad 2\text{-bromo-2-methylpentane}
\end{align*}
\]

As we saw in Chapter 4, the parent is the longest chain, and it should be numbered so that the first substituent receives the lower number:

\[
\begin{align*}
\text{Correct} & \quad \text{Incorrect} \\
\begin{array}{c}
\text{Br} \\
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} & \begin{array}{c}
\text{Br} \\
7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}
\end{align*}
\]

\[
\begin{array}{c}
\text{Br} \\
2, 5, 5 \text{ beats } 3, 3, 6
\end{array}
\]

CONCEPTUAL CHECKPOINT

7.1 Assign a systematic name for each of the following compounds:

(a) (b) (c) (d)

When a chirality center is present in the compound, the configuration must be indicated at the beginning of the name:

\[
(R)-5\text{-bromo-2,3,3-trimethylheptane}
\]
In addition to systematic names, IUPAC nomenclature also recognizes common names for many halogenated organic compounds.

<table>
<thead>
<tr>
<th>Systematic name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halo alkane</td>
<td>Alkyl halide or organohalide</td>
</tr>
</tbody>
</table>

The systematic name treats a halogen as a substituent, calling the compound a **haloalkane**. The common name treats the compound as an alkyl substituent connected to a halide, and the compound is called an **alkyl halide** or an **organohalide**.

Structure of Alkyl Halides

Each carbon atom is described in terms of its proximity to the halogen using letters of the Greek alphabet. The **alpha** (α) **position** is the carbon atom connected directly to the halogen, while the **beta** (β) **positions** are the carbon atoms connected to the alpha position:

![Beta positions](image)

An alkyl halide will have only one α position, but there can be as many as three β positions. This chapter focuses on reactions that occur at the α position, and the next chapter will focus on reactions involving the β position.

Alkyl halides are classified as **primary** (1°), **secondary** (2°), or **tertiary** (3°) based on the number of alkyl groups connected to the α position.

![Classification of alkyl halides](image)

Uses of Organohalides

Many organohalides are toxic and have been used as insecticides:

![Organohalides](image)

DDT (dichlorodiphenyltrichloroethane) was developed in the late 1930s and became one of the first insecticides to be used around the globe. It was found to exhibit strong toxicity for insects but rather low toxicity for mammals. DDT was used as an insecticide for many decades and has been credited with saving more than half a billion lives by killing mosquitos that carry deadly diseases. Unfortunately, it was found that DDT does not degrade quickly and persists...
in the environment. Rising concentrations of DDT in wildlife began to threaten the survival of many species. In response, the Environmental Protection Agency (EPA) banned the use of DDT in 1972, and it was replaced with other, environmentally safer, insecticides.

Lindane is used in shampoos designed to treat head lice, while chlordane and methyl bromide have been used to prevent and treat termite infestations. The use of methyl bromide has recently been regulated due to its role in the destruction of the ozone layer (for more on the hole in the ozone layer, see Section 11.8).

Organohalides are particularly stable compounds, and many of them, like DDT, persist and accumulate in the environment. PCBs (polychlorinated biphenyls) represent another well-known example. Biphenyl is a compound that can have up to 10 substituents:

PCBs are compounds in which many of these positions contain chlorine atoms. PCBs were originally produced as coolants and insulating fluids for industrial transformers and capacitors. They were also used as hydraulic fluids and as flame retardants. But their accumulation in the environment began to threaten wildlife, and their use was banned.

The above examples have contributed to the bad reputation of organohalides. As a result, organohalides are often viewed as man-made poisons. However, research over the last 20 years has indicated that organohalides are actually more common in nature than had previously been thought. For example, methyl chloride is the most abundant organohalide in the atmosphere. It is produced in large quantities by evergreen trees and marine organisms, and it is consumed by many bacteria, such as *Hyphomicrobium* and *Methylobacterium*, that convert methyl chloride into CO$_2$ and Cl$^-$$^.$

Many organohalides are also produced by marine organisms. Over 4000 such compounds have already been identified, and several hundred new compounds are discovered each year. Here are two examples:

Organohalides serve a variety of functions in living organisms. In sponges, corals, snails, and seaweeds organohalides are used as a defense mechanism against predators (a form of chemical warfare). Here are two such examples:
Both of these compounds are used to ward off predators. In many kinds of organisms organo-
halides act as hormones (chemical messengers that act only on specific target cells). Examples
include the following:

- **2,6-Dichlorophenol**
 Used as a sex hormone by the lone star tick, *Amblyomma americanum*

- **2,6-Dibromophenol**
 Isolated from the acorn worm, *Balanoglossus biminiensis*, likely used as a hormone

- **2,4-Dichlorophenol**
 Used as a growth hormone by *Penicillium* molds

Not all halogenated compounds are toxic. In fact, many organohalides have clinical applica-
tions. For example, the following compounds are widely used and have contributed much to the
improvement of physical and psychological health:

- **Bronopol**
 (2-Bromo-2-nitropropane-1,3-diol)
 A powerful antimicrobial compound safe enough to use in baby-wipes

- **Chlorpheniramine**
 An antihistamine, sold under the trade name Chlor-Trimeton®

- **(R)-Fluoxetine**
 An antidepressant, sold under the trade name Prozac®

Some organohalides have even been used in the food industry. Consider, for example, the struc-
ture of sucralose, shown here. Sucralose contains three chlorine atoms, but it is known not to
be toxic. It is several hundred times sweeter than sugar and is sold as an artificial, low-calorie
sweetener under the trade name Splenda®.

BY THE WAY
Sucralose was discovered by accident in 1976 when a British company (Tate and Lyle) was conducting
research on potential uses of chlorinated sugars. A foreign graduate student participating in the research
misunderstood a request to “test” one of the compounds and instead thought he was
being asked to “taste” the compound. The graduate student reported an intensely
sweet taste, and it was later found to be safe to consume.
7.3 Possible Mechanisms for Substitution Reactions

Recall from Chapter 6 that ionic mechanisms are comprised of only four types of arrow-pushing patterns (Figure 7.3). All four of these steps will be used in this chapter, so it might be wise to review Sections 6.7–6.10.

Nucleophilic attack

\[
\begin{array}{c}
\text{Br}^- \\
\text{Nuc} \\
\text{LG} \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Nuc} \\
\text{LG} \\
\text{Br}^- \\
\end{array}
\]

Loss of a leaving group

\[
\begin{array}{c}
\text{Br}^- \\
\text{Nuc} \\
\text{LG} \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Nuc} \\
\text{LG} \\
\text{Br}^- \\
\end{array}
\]

Proton transfer

\[
\begin{array}{c}
\text{OH}^- \\
\text{H}^+ \\
\text{Cl}^- \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{H}^+ \\
\text{Cl}^- \\
\text{OH}^- \\
\end{array}
\]

Rearrangement

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{Nuc} \\
\text{LG} \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{H}_3\text{C} \\
\text{Nuc} \\
\text{LG} \\
\end{array}
\]

Every substitution reaction exhibits at least two of the four patterns—nucleophilic attack and loss of a leaving group:

\[
\begin{array}{c}
\text{Nuc}^- \\
\text{LG} \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Nuc} \\
\text{LG} \\
\text{Nuc}^- \\
\end{array}
\]

But consider the order of these events. Do they occur simultaneously (in a concerted fashion), as shown above, or do they occur in a stepwise fashion, as shown below?

\[
\begin{array}{c}
\text{Nuc}^- \\
\text{LG} \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Nuc}^- \\
\text{LG} \\
\text{Nuc} \\
\end{array}
\]

In the stepwise mechanism, the leaving group leaves, generating an intermediate carbocation, which is then attacked by the nucleophile. The nucleophile cannot attack before the leaving group leaves, because that would violate the octet rule:

\[
\begin{array}{c}
\text{Nuc}^- \\
\text{LG} \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Nuc}^- \\
\text{LG} \\
\text{Nuc} \\
\end{array}
\]

Carbon cannot have five bonds

Therefore, there are only two possible mechanisms for a substitution reaction:

- In a **concerted process**, nucleophilic attack and loss of the leaving group occur simultaneously.
- In a **stepwise process**, loss of the leaving group occurs first followed by nucleophilic attack.

We will see that both of these mechanisms do occur, but under different conditions. We will explore each mechanism in the next section, but first let’s practice drawing the curved arrows for the two mechanisms.
SKILLBUILDER

7.1 DRAWING THE CURVED ARROWS OF A SUBSTITUTION REACTION

LEARN the skill

Below are two substitution reactions. Experimental evidence suggests that the first reaction proceeds via a concerted process, while the second reaction proceeds via a stepwise process. Draw a mechanism for each reaction:

(a) $\begin{align*} &\text{Br} + \text{NaOH} \\
&\rightarrow \text{OH} + \text{NaBr} \end{align*}$

(b) $\begin{align*} &\text{Br} + \text{NaCl} \\
&\rightarrow \text{Cl} + \text{NaBr} \end{align*}$

SOLUTION

(a) First identify the substrate, the leaving group, and the nucleophile. Here, the substrate is butyl bromide, the leaving group is bromide, and the nucleophile is a hydroxide ion:

When you see NaOH, remember that the reagent is a hydroxide ion (HO⁻). Na⁺ is the counter-ion, and its role in the reaction does not concern us in most cases. In a concerted process, nucleophilic attack and loss of a leaving group occur simultaneously. This process requires two curved arrows—one to show the nucleophilic attack and one to show the loss of the leaving group. When drawing the first curved arrow, place the tail on a lone pair of the nucleophile, and place the head on the carbon atom bearing the leaving group:

(b) A stepwise process involves two separate mechanistic steps: (1) loss of a leaving group to form a carboxation intermediate followed by (2) nucleophilic attack. To draw these steps, we must identify the substrate, leaving group, and nucleophile. Here, the substrate is tert-butyl bromide, the leaving group is a bromide ion, and the nucleophile is a chloride ion:

The first step of the mechanism requires one curved arrow showing the loss of the leaving group. The tail of this curved arrow is placed on the bond that is broken (the C—Br bond); the head of the arrow is placed on the bromine atom.
The second step of the mechanism requires one curved arrow showing the nucleophilic attack in which the carbocation intermediate is captured by the nucleophile (chloride):

\[
\text{Nucleophilic attack}
\]

The complete mechanism can therefore be drawn like this:

\[
\text{Loss of a leaving group} \quad \text{Nucleophilic attack}
\]

BY THE WAY

Draw all three groups of a tertiary carbocation as far apart from each other as possible:

PRACTICE the skill 7.2 For each of the following reactions, assume a concerted process is taking place and draw the mechanism:

(a) \[\text{Br} + \text{NaSH} \rightarrow \text{SH} + \text{NaBr} \]

(b) \[\text{I} + \text{NaOMe} \rightarrow \text{O} + \text{NaI} \]

APPLY the skill 7.3 For each of the following reactions assume a stepwise process is taking place and draw the mechanism:

(a) \[\text{Br} + \text{COO}^- \rightarrow \text{O} + \text{Br}^- \]

(b) \[\text{I} + \text{NaCl} \rightarrow \text{Cl} + \text{NaI} \]

7.4 When a nucleophile and electrophile are tethered to each other (that is, both present in the same compound), an *intramolecular substitution reaction* can occur, as shown. Assume that this reaction occurs via a concerted process and draw the mechanism.

\[\text{O} - \text{O} \rightarrow \text{Br} \rightarrow \text{O} \quad + \quad \text{Br}^- \]

7.5 For the substitution reaction shown below, assume a stepwise process is taking place and draw the mechanism. (HINT: Review the rules for drawing resonance structures, Section 2.10)

\[\text{Br} + \text{NaCl} \rightarrow \text{Cl} + \text{NaBr} \]
7.4 The S_N2 Mechanism

During the 1930s, Sir Christopher Ingold and Edward D. Hughes (University College, London) investigated substitution reactions in an effort to elucidate their mechanism. Based on kinetic and stereochemical observations, Ingold and Hughes proposed a concerted mechanism for many of the substitution reactions that they investigated. We will now explore the observations that led them to propose a concerted mechanism.

Kinetics

For most of the reactions that they investigated, Ingold and Hughes found the rate of reaction to be dependent on the concentrations of both the substrate and the nucleophile. This observation is summarized in the following rate equation:

\[\text{Rate} = k \ [\text{substrate}] \ [\text{nucleophile}] \]

Specifically, they found that doubling the concentration of the nucleophile caused the reaction rate to double. Similarly, doubling the concentration of the substrate also caused the rate to double. The rate equation above is described as **second order**, because the rate is linearly dependent on the concentrations of two different compounds. Based on their observations, Ingold and Hughes concluded that the mechanism must exhibit a step in which the substrate and the nucleophile collide with each other. Because that step involves two chemical entities, it is said to be **bimolecular**. Ingold and Hughes coined the term \(S_N2 \) to refer to bimolecular substitution reactions:

\[\text{S} \rightarrow \text{N} \rightarrow \text{2} \]

The experimental observations for \(S_N2 \) reactions are consistent with a concerted mechanism, because a concerted mechanism exhibits only one mechanistic step, involving both the nucleophile and the substrate:

\[\text{Nucleophilic attack} \quad \text{Loss of a leaving group} \]

\[\text{Nuc}^+ \quad \text{LG} \quad \rightarrow \quad \text{Nuc}^- \quad + \quad \text{LG}^- \]

It makes sense that the rate should be dependent on the concentrations of both the nucleophile and the substrate.

CONCEPTUAL CHECKPOINT

7.6 The reaction below exhibits a second-order rate equation:

\[\text{I} + \text{NaOH} \rightarrow \text{OH}^- + \text{NaI} \]

(a) What happens to the rate if the concentration of 1-iodopropane is tripled and the concentration of sodium hydroxide remains the same?

(b) What happens to the rate if the concentration of 1-iodopropane remains the same and the concentration of sodium hydroxide is doubled?

(c) What happens to the rate if the concentration of 1-iodopropane is doubled and the concentration of sodium hydroxide is tripled?
Stereospecificity of SN2 Reactions

There is another crucial piece of evidence that led Ingold and Hughes to propose the concerted mechanism. When the α position is a chirality center, a change in configuration is generally observed, as illustrated in the following example:

\[
\text{MeBr} + \overset{\text{SH}}{\text{H}} \rightarrow \text{H}_{\text{SMe}} + \text{Br}^{\ominus}
\]

The reactant exhibits the \(S\) configuration, while the product exhibits the \(R\) configuration. That is, this reaction is said to proceed with inversion of configuration. This stereochemical outcome is often called a Walden inversion, named after Paul Walden, the German chemist who first observed it.

The requirement for inversion of configuration means that the nucleophile can only attack from the back side (the side opposite the leaving group), and never from the front side (Figure 7.4). There are two ways to explain why the reaction proceeds through back-side attack:

1. The lone pairs of the leaving group create regions of high electron density that effectively block the front side of the substrate, so the nucleophile can only approach from the back side.
2. Molecular orbital (MO) theory provides a more sophisticated answer. Recall that molecular orbitals are associated with the entire molecule (as opposed to atomic orbitals, which are associated with individual atoms). According to MO theory, the electron density flows from the HOMO of the nucleophile into the LUMO of the electrophile. As an example let's focus our attention on the LUMO of methyl bromide (Figure 7.5). If a nucleophile attacks methyl bromide from the front side, the nucleophile will encounter a node, and as a result, no net bonding will result from the overlap between the HOMO of the nucleophile and the LUMO of the electrophile. In contrast, nucleophilic attack from the back side allows for efficient overlap between the HOMO of the nucleophile and the LUMO of the electrophile.

The observed stereochemical outcome for an SN2 process (inversion of configuration) is consistent with a concerted mechanism. The nucleophile attacks with simultaneous loss of the leaving group. This causes the chirality center to behave like an umbrella flipping in the wind:

\[
\overset{\text{Me}}{\text{H}}_{\text{SMe}} + \overset{\text{Br}}{\text{H}} \rightarrow \left[\overset{\delta^-}{\text{H}_{\text{SMe}}} \right] + \overset{\delta^-}{\text{H}_{\text{SMe}}} \rightarrow \text{H}_{\text{SMe}} + \overset{\delta^-}{\text{H}}_{\text{SMe}} + \overset{\delta^-}{\text{H}}_{\text{SMe}}
\]

The transition state (drawn in brackets) will be discussed in more detail in the coming section. This reaction is said to be stereospecific, because the configuration of the product is dependent on the configuration of the starting material.
When \((\mathcal{R})\)-2-bromobutane is treated with a hydroxide ion, a mixture of products is obtained. An \(S_N2\) process is responsible for generating one of the products, while the other products are generated via other processes that will be discussed in the next chapter. Draw the \(S_N2\) product that is obtained when \((\mathcal{R})\)-2-bromobutane reacts with a hydroxide ion.

SOLUTION

First draw the reagents described in the problem:

\[
\text{(R)-2-bromobutane} \quad + \quad \overset{\cdot}{\text{OH}} \quad \rightarrow \quad ?
\]

Now identify the nucleophile and the substrate. Bromobutane is the substrate and hydroxide is the nucleophile. When hydroxide attacks, it will eject the bromide ion as a leaving group. The net result is that the Br will be replaced with an OH group:

\[
\text{OH} \quad \text{Br} \quad \rightarrow \quad \text{OH} \quad \text{Br}
\]

In this case, the \(\alpha\) position is a chirality center, so we expect inversion:

\[
\text{Br} \quad + \quad \overset{\cdot}{\text{OH}} \quad \rightarrow \quad \text{OH} \quad + \quad \text{Br}^-
\]

Structure of the Substrate

For \(S_N2\) reactions, Ingold and Hughes also found the rate to be sensitive to the nature of the starting alkyl halide. In particular, methyl halides and primary alkyl halides react most quickly with nucleophiles. Secondary alkyl halides react more slowly, and tertiary alkyl halides are essentially unreactive toward \(S_N2\) (Figure 7.6). This trend is consistent with a concerted process in which the nucleophile is expected to encounter steric hindrance as it approaches the substrate.

To understand the nature of the steric effects that govern \(S_N2\) reactions, we must explore the transition state for a typical \(S_N2\) reaction, shown in general form in Figure 7.7. Recall that a transition state is represented by a peak in an energy diagram. Consider, for example, an energy diagram showing the reaction between a cyanide ion and methyl bromide (Figure 7.8). The highest point on the curve represents the transition state. The superscript symbol that looks like a telephone pole outside the brackets indicates that the drawing shows a transition state rather than an intermediate. The relative energy of this transition state determines the rate of the reaction. If the transition
The transition state is high in energy, then E_a will be large, and the rate will be slow. If the transition state is low in energy, then E_a will be small, and the rate will be fast. With this in mind, we can now explore the effects of steric hindrance in slowing down the reaction rate and explain why tertiary substrates are unreactive.

![Figure 7.7](image)

FIGURE 7.7
The generic form of a transition state in an S_N2 process.

![Figure 7.8](image)

FIGURE 7.8
An energy diagram of the S_N2 reaction that occurs between methyl bromide and a cyanide ion.

Take a close look at the transition state. The nucleophile is in the process of forming a bond with the substrate, and the leaving group is in the process of breaking its bond with the substrate. Notice that there is a partial negative charge on either side of the transition state. This can be seen more clearly in an electrostatic potential map of the transition state (Figure 7.9).
If the hydrogen atoms in Figure 7.9 are replaced with alkyl groups, steric interactions cause the transition state to be higher in energy, raising E_a for the reaction. Compare the energy diagrams for reactions involving methyl, primary, and secondary substrates (Figure 7.10). With a tertiary substrate, the transition state is so high in energy that the reaction occurs too slowly to observe.

Steric hindrance at the beta position can also decrease the rate of reaction. For example, consider the structure of neopentyl bromide:

This compound is a primary alkyl halide, but it has three methyl groups attached to the beta position. These methyl groups provide steric hindrance that causes the energy of the transition state to be very high (Figure 7.11). Once again, the rate is very slow. In fact, the rate of a neopentyl substrate is similar to the rate of a tertiary substrate in S_N2 reactions. This is an interesting example, because the substrate is a primary alkyl halide that essentially does not undergo an S_N2 reaction. This example illustrates why it is best to understand concepts in organic chemistry rather than memorize rules without knowing what they mean.

SKILLBUILDER

7.3 DRAWING THE TRANSITION STATE OF AN S_N2 PROCESS

LEARN the skill

Draw the transition state of the following reaction:

$\text{Cl} + \overset{\delta-}{\text{SH}} \rightarrow \overset{\delta-}{\text{SH}} + \overset{\delta-}{\text{Cl}}$

SOLUTION

First identify the nucleophile and the leaving group. These are the two groups that will be on either side of the transition state:

Nucleophile $\overset{\delta-}{\text{SH}}$

Leaving group $\overset{\delta-}{\text{Cl}}$

The transition state will need to show a bond forming with the nucleophile and a bond breaking with the leaving group. Dotted lines are used to show the bonds that are breaking and forming:

$\text{HS} \rightarrow \text{C} \rightarrow \text{Cl}$
The $\delta -$ symbol is placed on both the incoming nucleophile and the outgoing leaving group to indicate that the negative charge is spread out over both locations.

Now we must draw all of the alkyl groups connected to the α position. In our example, the α position has one CH$_3$ group and two H’s:

$$\text{Cl} \quad = \quad \text{H}_3\text{C} - \alpha - \text{Cl}$$

So we draw these groups in the transition state connected to the α position. One group is placed on a straight line, and the other two groups are placed on a wedge and on a dash:

It does not matter whether the CH$_3$ group is placed on the line, wedge, or dash. But don’t forget to indicate that the drawing is a transition state by surrounding it with brackets and using the symbol that indicates a transition state (the telephone pole).

PRACTICE the skill 7.9 Draw the transition state for each of the following S_{N2} reactions:

(a) $\text{Br} + \text{OH} \rightarrow \text{OH} + \text{Br}^-$
(b) $\text{I} + \text{O} \rightarrow \text{O} + \text{I}^-$
(c) $\text{Cl} + \text{NaOH} \rightarrow \text{OH} + \text{NaCl}$
(d) $\text{Br} + \text{NaSH} \rightarrow \text{SH} + \text{NaBr}$

APPLY the skill

7.10 In Problem 7.4, we saw that an *intramolecular* substitution reaction can occur when the nucleophilic center and electrophilic center are present in the same compound. Draw the transition state of the reaction in Problem 7.4.

7.11 Treatment of 5-hexen-1-ol with bromine affords a cyclic product:

$$\text{HO} - \text{CH}_2 - \text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_2 - \text{OH} \quad \text{Br}_2 \rightarrow \quad \text{HO} - \text{CH}_2 - \text{CH}_2 - \text{CH} = \text{CH} - \text{Br} + \text{NaBr}$$

The mechanism of this reaction involves several steps, one of which is an intramolecular S_{N2} process:

In this step, a bond is in the process of breaking, while another bond is in the process of forming. Draw the transition state of this S_{N2} process, and identify which bond is being broken and which bond is being formed. Can you offer an explanation as to why this step is favorable?
PRACTICALLY SPEAKING

S\text{N}_2 Reactions in Biological Systems—Methylation

In the laboratory, the transfer of a methyl group is accomplished via an S\text{N}_2 process using methyl iodide:

![Methyl iodide diagram]

This process is called alkylation, because an alkyl group has been transferred to the nucleophile. It is an S\text{N}_2 process, which means there are limitations on the type of alkyl group that can be used. Tertiary alkyl groups cannot be transferred. Secondary alkyl groups can be transferred, but slowly. Primary alkyl groups and methyl groups are transferred most readily. The alkylation process shown above is the transfer of a methyl group and is therefore called methylation. Methyl iodide is ideally suited for this task, because iodide is an excellent leaving group and because methyl iodide is a liquid at room temperature. This makes it easier to work with than methyl chloride or methyl bromide, which are gases at room temperature.

Methylation reactions also occur in biological systems, but instead of CH\text{I}_3, the methylation agent is a compound called SAM (S-adenosylmethionine). Your body produces SAM via an S\text{N}_2 reaction between ATP and the amino acid methionine:

![SAM diagram]

SAM is the biological equivalent of CH\text{I}_3. The leaving group is much larger, but SAM functions in the same way as CH\text{I}_3. When SAM is attacked by a nucleophile, an excellent leaving group is expelled:

![SAM reaction diagram]

SAM plays a role in the biosynthesis of many compounds, including adrenaline. In response to danger or excitement, adrenaline is produced via a methylation reaction that takes place between noradrenaline and SAM in the adrenal gland:

![Adrenaline diagram]

In this reaction, methionine acts as a nucleophile and attacks adenosine triphosphate (ATP), kicking off a triphosphate leaving group. The resulting product, called SAM, is able to function as a methylating agent, very much like CH\text{I}_3. Both CH\text{I}_3 and SAM exhibit a methyl group attached to an excellent leaving group.

After being released into the bloodstream, adrenaline increases heart rate, elevates sugar levels to provide a boost of energy, and increases levels of oxygen reaching the brain. These physiological responses prepare the body for “flight or flight.”
The second possible mechanism for a substitution reaction is a stepwise process in which there is (1) loss of the leaving group to form a carbocation intermediate followed by (2) nucleophilic attack on the carbocation intermediate:

Many reactions appear to follow this stepwise mechanism. Once again, there are several pieces of evidence that support this stepwise mechanism in those cases.

Kinetics

Many substitution reactions do not exhibit second-order kinetics. Consider the following example:

\[
\text{I} + \text{NaBr} \rightarrow \text{Br} + \text{NaI}
\]

In the reaction above, the rate is dependent only on the concentration of the substrate. The rate equation has the following form:

\[
\text{Rate} = k \text{ [substrate]}
\]

Increasing or decreasing the concentration of the nucleophile has no measurable effect on the rate. The rate equation is said to be first order, because the rate is linearly dependent on the concentration of only one compound. In such cases, the mechanism must exhibit a slow step in which the nucleophile does not participate. Because that step involves only one chemical entity, it is said to be unimolecular. Ingold and Hughes coined the term \(S_N1 \) to refer to unimolecular substitution reactions:

When we use the term unimolecular, we don't mean that the nucleophile is completely irrelevant. Clearly, the nucleophile is necessary, or there won't be a reaction. The term unimolecular simply describes the fact that only one chemical entity participates in the slowest step of the reaction, and as a result, the rate of the reaction is not affected by how much nucleophile is present.
To understand why this is the case, consider the energy diagram of an S_N1 mechanism (Figure 7.12). The mechanism has two steps, so we expect two humps. Compare the activation energy (E_a) for each of these steps. The first step has a larger E_a, and therefore, the first step is slower. The rate of the entire reaction cannot be any faster than the rate of the slow step. The slow step is therefore called the rate-determining step (RDS). To illustrate this concept, consider the modified hourglass in Figure 7.13. As the sand falls, it passes through two passageways. The first passageway is a narrow opening; it represents the slower step. The second passageway has a larger opening and therefore has no effect on the rate at which the sand falls. If the second passageway is further widened, it will not impact the overall rate in any way. The same idea is true for reactions as well. The rate of an S_N1 process is dependent only on the rate of the slow step, the loss of the leaving group. As a result, the rate of an S_N1 process will only be affected by factors that affect the rate at which the leaving group leaves. Increasing the concentration of the nucleophile has no impact on the rate of the slow step. It is true that the nucleophile must be present in order to obtain the product, but an excess of nucleophile will not speed up the reaction. A unimolecular substitution reaction is therefore consistent with a stepwise mechanism in which the first step is the rate-determining step.

FIGURE 7.12
An energy diagram of an S_N1 process.

FIGURE 7.13
A modified hourglass with two passageways. The narrow passageway is the rate-determining step.
Structure of Substrate

The rate of an SN1 reaction is highly dependent on the nature of the substrate, but the trend is the reverse of the trend we saw for SN2 reactions. With SN1 reactions, tertiary substrates react most quickly, while methyl and primary substrates are mostly unreactive (Figure 7.14). This observation supports a stepwise mechanism (SN1). Why? With SN2 reactions, steric hindrance was the issue because the nucleophile was directly attacking the substrate. In contrast, in SN1 reactions the nucleophile does not attack the substrate directly. Instead, the leaving group leaves first, resulting in the formation of a carbocation, and that step is the rate-determining step. Once the carbocation forms, the nucleophile captures it very quickly. The rate is only dependent on how quickly the leaving group leaves to form a carbocation. Steric hindrance is not at play, because the rate-determining step does not involve nucleophilic attack. The dominant factor now becomes carbocation stability.

Recall that carbocations are stabilized by neighboring alkyl groups (Figure 7.15). Tertiary carbocations are more stable than secondary carbocations, which are more stable than primary carbocations. Therefore, formation of a tertiary carbocation will have a smaller E_a than...
The larger E_a associated with formation of a secondary carbocation can be explained by the Hammond postulate (Section 6.6). Specifically, the transition state for formation of a tertiary carbocation will be close in energy to a tertiary carbocation, while the transition state for formation of a secondary carbocation will be close in energy to a secondary carbocation. Therefore, formation of a tertiary carbocation will involve a smaller E_a.

The bottom line is that tertiary substrates generally undergo substitution via an S_N1 process, while primary substrates generally undergo substitution via an S_N2 process. Secondary substrates can proceed via either pathway (S_N1 or S_N2) depending on other factors, which are discussed later in this chapter.

SKILLBUILDER 7.4 DRAWING THE CARBOCATION INTERMEDIATE OF AN S_N1 PROCESS

LEARN the skill Draw the carbocation intermediate of the following S_N1 reaction:

\[\text{Cl} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Cl} \overset{\text{O}}{\xrightarrow{\text{O}}} \text{Cl} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{O} + \text{Cl}^- \]

SOLUTION First identify the leaving group:

Loss of the leaving group will produce a carbocation and a chloride ion. To keep track of the electrons, it is helpful to draw the curved arrow that shows the flow of electrons:

When drawing the carbocation intermediate, make sure that all three groups on the carbocation are drawn as far apart as possible. Remember that a carbocation has trigonal planar geometry, and the drawing should reflect that:
7.14 Draw the carbocation intermediate generated by each of the following substrates in an Sn1 reaction:

(a)
(b)
(c)
(d)

7.15 Identify which of the following substrates will undergo an Sn1 reaction more rapidly. Explain your choice.

Try Problems 7.50, 7.51

Stereochemistry of Sn1 Reactions

Recall that Sn2 reactions proceed via an inversion of configuration:

\[\text{(S)-2-bromobutane} + \text{NaCl} \rightarrow \text{(R)-2-chlorobutane} + \text{NaBr} \]

In contrast, Sn1 reactions involve formation of an intermediate carbocation, which can then be attacked from either side (Figure 7.17), leading to both inversion of configuration and retention of configuration.

A carbocation is planar, and either side of the plane can be attacked by the nucleophile with equal likelihood. Since the carbocation can be attacked on either side with equal likelihood, we should expect Sn1 reactions to produce a racemic mixture (equal mixture of inversion and retention). In practice, though, Sn1 reactions rarely produce exactly equal amounts of inversion and retention products. There is usually a slight preference for the inversion product. The accepted explanation involves the formation of ion pairs. When the leaving group first leaves, it is initially very close to the intermediate carbocation, forming an intimate ion pair (Figure 7.18). If the nucleophile attacks the carbocation while it is still participating in an ion pair, then the leaving group effectively blocks one face of the carbocation. The other side of the carbocation can experience unhindered attack by a nucleophile. As a result, the nucleophile will attack more often on the side opposite the leaving group, leading to a slight preference for inversion over retention.
CHAPTER 7
Substitution Reactions

LEARN the skill

STEP 1
Identify the nucleophile and the leaving group.

STEP 2
Replace the leaving group with the nucleophile.

** FIGURE 7.18**
Loss of a leaving group initially forms an ion pair, which hinders attack on one face of the carbocation.

SKILLBUILDER

7.5 DRAWING THE PRODUCTS OF AN S_N1 PROCESS

LEARN the skill

Draw the products of the following S_N1 reaction:

\[
\begin{align*}
\text{I} & \quad \xrightarrow{\text{NaBr}} \quad ?
\end{align*}
\]

SOLUTION

First identify the leaving group and the nucleophile that will attack once the leaving group has left:

![Leaving group and Nucleophile](image)

In an S_N1 process, the leaving group leaves first, generating a carbocation that is then attacked by the nucleophile:

![Carbocation and Products](image)

In this example, substitution is taking place at a chirality center, so we must consider the stereochemical outcome. In an S_N1 process, both enantiomers are expected as products, with a slight preference for the enantiomer resulting from inversion of configuration:
7.6 Drawing the Complete Mechanism of an S\textsubscript{N}1 Reaction

We have now seen that substitution reactions can occur through either a concerted mechanism (S\textsubscript{N}2) or a stepwise mechanism (S\textsubscript{N}1) (Figure 7.19). When drawing the mechanism of an S\textsubscript{N}2 or S\textsubscript{N}1 process, additional mechanistic steps will sometimes be required. In this section, we will focus on the additional steps that can accompany an S\textsubscript{N}1 process. Recall from Chapter 6 that ionic mechanisms are constructed using only four different types of arrow-pushing patterns. This will now be important, as all four patterns can play a role in S\textsubscript{N}1 processes.

Let’s now summarize the differences that we have seen between S\textsubscript{N}2 and S\textsubscript{N}1 processes (Table 7.1).

TABLE 7.1 A COMPARISON OF S\textsubscript{N}2 AND S\textsubscript{N}1 PROCESSES

<table>
<thead>
<tr>
<th>S\textsubscript{N}2</th>
<th>S\textsubscript{N}1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy diagram</td>
<td></td>
</tr>
<tr>
<td>Free energy (G)</td>
<td>Free energy (G)</td>
</tr>
<tr>
<td>Rate equation</td>
<td>Rate = k [substrate] [nucleophile]</td>
</tr>
<tr>
<td>Rate of reaction</td>
<td>Methyl > 1\textdegree > 2\textdegree > 3\textdegree</td>
</tr>
<tr>
<td>Stereochemistry</td>
<td>Inversion of configuration</td>
</tr>
</tbody>
</table>
As seen in Figure 7.19, every S_N mechanism exhibits two separate steps: (1) loss of a leaving group and (2) nucleophilic attack. In addition to these two core steps, some S_N processes are also accompanied by additional steps (highlighted in blue in Figure 7.20), which can occur before, between, or after the two core steps:

1. **Before the two core steps**—a proton transfer step is possible.
2. **Between the two core steps**—a carbocation rearrangement is possible.
3. **After the two core steps**—a proton transfer step is possible.

We will now explore each of these three possibilities, and we will learn how to determine whether any of the three additional steps should be included when proposing the mechanism for a transformation that occurs via an S_N process.

Proton Transfer at the Beginning of an S_N Process

Before the two core steps of an S_N mechanism, a proton transfer will be necessary whenever the leaving group is an OH group. Hydroxide is a bad leaving group and will not leave by itself (as will be discussed later in this chapter):

![Proton transfer example](image)

However, once an OH group is protonated, it becomes an excellent leaving group because it can leave as a neutral species (no net charge):

![Proton transfer example](image)

If a substrate has no leaving group other than an OH group, then acidic conditions will be required in order to perform an S_N reaction. In the following example, HCl supplies the H⁺ necessary to protonate the OH group as well as the chloride ion that functions as the nucleophile:
Notice that the two core steps of this $S_N 1$ process are preceded by a proton transfer, giving a total of three mechanistic steps:

\[+H^+ \rightarrow \text{Nuc attack} \]

CONCEPTUAL CHECKPOINT

7.18 For each of the following substrates, determine whether an $S_N 1$ process will require a proton transfer at the beginning of the mechanism:

(a) \(\text{I} \)
(b) \(\text{OH} \)
(c) \(\text{Br} \)
(d) \(\text{OH} \)
(e) \(\text{OH} \)
(f) \(\text{Cl} \)

Proton Transfer at the End of an $S_N 1$ Process

After the two core steps of an $S_N 1$ mechanism, a proton transfer will be necessary whenever the nucleophile is neutral (not negatively charged). For example:

\[\text{Cl} \]
\[\text{H} \]
\[\text{O} \]
\[\text{H} \]
\[\text{Nuc attack} \]
\[\text{Loss of leaving group} \]
\[\text{Proton transfer} \]

In this case, the nucleophile is water (H_2O), which does not possess a negative charge. In such a case, nucleophilic attack of the carbocation will produce a positively charged species. Removal of the positive charge requires a proton transfer. Notice that the mechanism above has three steps:

\[\text{Nuc attack} \rightarrow \text{H}^+ \]

Any time the attacking nucleophile is neutral, a proton transfer is necessary at the end of the mechanism. Below is one more example. Reactions like this, in which the solvent functions as the nucleophile, are called solvolysis reactions.

\[\text{Me} \]
\[\text{Cl} \]
\[\text{H} \]
\[\text{Me} \]
\[\text{Loss of leaving group} \]
\[\text{Nucleophilic attack} \]
\[\text{Proton transfer} \]
Carbocation Rearrangements during an SN1 Process

The first core step of an SN1 process is loss of a leaving group to generate a carbocation. Recall from Chapter 6 that carbocations are susceptible to rearrangement via either a hydride shift or a methyl shift. Here is an example of an SN1 mechanism with a carbocation rearrangement:

\[
\begin{align*}
\text{NaCl} & \\
\text{Nu} & \\
\text{–} & \\
\text{Br} & \\
\end{align*}
\]

Notice that the carbocation rearrangement occurs between the two core steps of the SN1 process:

\[
\begin{align*}
\text{C±} & \\
\text{rearrangement} & \\
\text{Nuc attack} & \\
\end{align*}
\]

In reactions where a carbocation rearrangement is possible, a mixture of products is generally obtained. The following products are obtained from the above reaction:

\[
\begin{align*}
\text{Cl} & \\
\text{Cl} & \\
\text{Br} & \\
\text{NaCl} & \\
\end{align*}
\]

This is the product if the carbocation is captured by the nucleophile before rearrangement.

This is the product if the carbocation is captured by the nucleophile after rearrangement.

The product distribution (ratio of products) depends on how fast the rearrangement takes place and how fast the nucleophile attacks the carbocation. If the rearrangement occurs faster than attack by the nucleophile, then the rearranged product will predominate. However, if the nucleophile attacks the carbocation faster than rearrangement (if it attacks before rearrangement occurs), then the unrearranged product will predominate. In most cases, the rearranged product predominates. Why? A carbocation rearrangement is an intramolecular process, while nucleophilic attack is an intermolecular process. In general, intramolecular processes occur more rapidly than intermolecular processes.
CONCEPTUAL CHECKPOINT

7.20 For each of the following substrates, determine whether an SN1 process will involve a carbocation rearrangement or not:

(a)
(b)
(c)
(d)
(e)
(f)

Summary of the SN1 Process and Its Energy Diagram

We have seen that an SN1 process has two core steps and can be accompanied by three additional steps, as summarized in Mechanism 7.1.

MECHANISM 7.1 THE SN1 PROCESS

Two core steps

Possible additional steps

If the leaving group is an OH group, it must be protonated before it can leave.

If the carbocation initially formed can rearrange to generate a more stable carbocation, then a rearrangement will occur.

If the nucleophile is neutral, a proton transfer is required to remove the positive charge that is generated.
Here is an example of an SN1 process that is accompanied by all three additional steps:

Since this mechanism has five steps, we expect the energy diagram for this reaction to exhibit five humps (Figure 7.21). The number of humps in the energy diagram of an SN1 process will always be equal to the number of steps in the mechanism. Since the number of steps can range anywhere from two to five, the energy diagram of an SN1 process can have anywhere from two to five humps. The SN1 processes encountered most frequently will have two or three steps.

A few aspects of the energy diagram in Figure 7.21 are worth special mention:

- The tertiary carbocation is lower in energy than the secondary carbocation.
- The E_a for the carbocation rearrangement is very small because a carbocation rearrangement is generally a very fast process.
- Oxonium ions (intermediates with a positively charged oxygen atom) are generally lower in energy than carbocations (because the oxygen atom of an oxonium ion has an octet of electrons, while the carbon atom of a carbocation does not have an octet).
SKILLUILDER

7.6 DRAWING THE COMPLETE MECHANISM OF AN S_N1 PROCESS

LEARN the skill

Draw the mechanism of the following S_N1 process:

\[
\begin{array}{c}
\text{Br} \\
\text{EtOH} \\
\text{OEt}
\end{array}
\]

SOLUTION

An S_N1 process must always exhibit two core steps: loss of a leaving group and nucleophilic attack. But we must consider whether any of the other three possible steps will occur:

- **Proton transfer**
- **Loss of LG**
- **Carbocation rearrangement**
- **Nuc attack**
- **Proton transfer**

Does the LG need to be protonated before it can leave?

- **No. Bromide is a good LG.**

Is the nucleophile ultimately positioned at a different location than the leaving group?

- **Yes. This indicates a carbocation rearrangement.**

Is the nucleophile neutral?

- **Yes. We will therefore need a proton transfer at the end of the mechanism in order to remove the positive charge.**

The mechanism will not begin with a proton transfer, but there will be a carbocation rearrangement, and there will be a proton transfer at the end of the mechanism. Therefore, the mechanism will have four steps:

- **Loss of LG**
- **Carbocation rearrangement**
- **Nuc attack**
- **Proton transfer**

Notice that this sequence utilizes each of the four arrow-pushing patterns that are possible for an ionic reaction. To draw these steps, we will rely on the skills we learned in Chapter 6:

- **Loss of leaving group**
- **Carbocation rearrangement**
- **Nucleophilic attack**
- **Proton transfer**
PRACTICE the skill 7.21 Draw the mechanism for each of the following S_N1 processes:

(a) \[
\begin{array}{c}
\text{OH} \\
\text{Br} \\
\text{Cyclic} \\
\text{HO} \\
\text{Br}
\end{array}
\xrightarrow{\text{HBr}}
\begin{array}{c}
\text{OH} \\
\text{Cyclic} \\
\text{HO} \\
\text{Br}
\end{array}
\]

(b) \[
\begin{array}{c}
\text{OH} \\
\text{Cyclic} \\
\text{HO} \\
\text{Br}
\end{array}
\xrightarrow{\text{HBr}}
\begin{array}{c}
\text{Br} \\
\text{Cyclic}
\end{array}
\]

(c) \[
\begin{array}{c}
\text{Br} \\
\text{Cyclic} \\
\text{Br}
\end{array}
\xrightarrow{\text{H}_2\text{O}}
\begin{array}{c}
\text{OH} \\
\text{Cyclic} \\
\text{OH}
\end{array}
\]

(d) \[
\begin{array}{c}
\text{I} \\
\text{Cyclic}
\end{array}
\xrightarrow{\text{EtOH}}
\begin{array}{c}
\text{EtO} \\
\text{Cyclic}
\end{array}
\]

(e) \[
\begin{array}{c}
\text{OH} \\
\text{Cyclic} \\
\text{OMe}
\end{array}
\xrightarrow{\text{H}_2\text{SO}_4, \text{MeOH}}
\begin{array}{c}
\text{OMe} \\
\text{Cyclic}
\end{array}
\]

(f) \[
\begin{array}{c}
\text{OH} \\
\text{Cyclic} \\
\text{OMe}
\end{array}
\xrightarrow{\text{H}_2\text{SO}_4, \text{MeOH}}
\begin{array}{c}
\text{H}_2\text{O} \\
\text{Cyclic}
\end{array}
\]

(g) \[
\begin{array}{c}
\text{Br} \\
\text{Cyclic} \\
\text{Br}
\end{array}
\xrightarrow{\text{NaSH}}
\begin{array}{c}
\text{SH} \\
\text{Cyclic}
\end{array}
\]

(h) \[
\begin{array}{c}
\text{I} \\
\text{Cyclic}
\end{array}
\xrightarrow{\text{EtOH}}
\begin{array}{c}
\text{EtO} \\
\text{Cyclic}
\end{array}
\]

APPLY the skill 7.22 Identify the number of steps (patterns) for the mechanisms in Problems 7.21a–h. For example, the patterns for the first two are:

7.21a: \[
\begin{array}{c}
\text{H}^+ \\
\text{LG} \\
\text{Nu attack}
\end{array}
\] This mechanism exhibits a proton transfer before the two core steps.

7.21b: \[
\begin{array}{c}
\text{H}^+ \\
\text{LG} \\
\text{C rearrangement} \\
\text{Nu attack}
\end{array}
\] This mechanism exhibits a proton transfer before the two core steps as well as a carbocation rearrangement in between the two core steps.

These patterns are not identical. Draw patterns for the other six problems. Then compare the patterns. There is only one pattern that is repeated in Problem 7.21. Identify the two problems that exhibit the same pattern, and then describe in words why those two reactions are so similar.

7.23 Treatment of (2R,3R)-3-methyl-2-pentanol with H_3O^+ affords a compound with no chirality centers. Predict the product of this reaction and draw the mechanism of its formation. Use your mechanism to explain how both chirality centers are destroyed.

Try Problems 7.48, 7.49, 7.52, 7.54, 7.65

In some rare cases, loss of the leaving group and carbocation rearrangement can occur in a concerted fashion (Figure 7.22). For example, neopentyl bromide cannot directly lose its leaving group, as that would generate a primary carbocation, which is too high in energy to form:

\[
\begin{array}{c}
\text{Br}^+ \\
\text{Neopentyl bromide}
\end{array}
\xrightarrow{\text{X}}
\begin{array}{c}
\text{Br}^+ \\
\text{Primary carbocation}
\end{array}
\]

FIGURE 7.22 In an S_N1 process, loss of the leaving group and carbocation rearrangement can occur in a concerted fashion.
7.7 Drawing the Complete Mechanism of an S_N2 Reaction

But it is possible for the leaving group to leave as a result of a methyl shift:

![Diagram of a methyl shift](image)

This is essentially a concerted process in which loss of the leaving group occurs simultaneously with a carbocation rearrangement. Examples like this are less common. In the vast majority of cases, each step of an S_N1 process occurs separately.

7.7 Drawing the Complete Mechanism of an S_N2 Reaction

In the previous section, we analyzed the additional steps that can accompany an S_N1 process. In this section, we analyze the additional steps that can accompany an S_N2 process. Recall that an S_N2 reaction is a concerted process in which nucleophilic attack and loss of the leaving group occur simultaneously (Figure 7.23). No carbocation is formed, so there can be no carbocation rearrangement. In an S_N2 process, the only two possible additional steps are proton transfers (Figure 7.24). There can be a proton transfer before and/or after the concerted step. Proton transfers will accompany S_N2 processes for the same reasons that they accompany S_N1 processes.

Specifically, a proton transfer is required at the beginning of a mechanism if the leaving group is an OH group, and it is required at the end of the mechanism if the nucleophile is neutral. Let’s see examples of each.

Proton Transfer at the Beginning of an S_N2 Process

A proton transfer is necessary at the beginning of an S_N2 process if the leaving group is an OH group. An example of this reaction is the conversion of methanol to methyl chloride, a reaction first performed by the French chemists Jean-Baptiste Dumas and Eugene Peligot in 1835. This transformation was achieved by boiling a mixture of methanol, sulfuric acid, and sodium chloride.

![Diagram of the conversion of methanol to methyl chloride](image)

The OH group is first protonated, converting it into a good leaving group, and then the chloride ion attacks in an S_N2 process, displacing the leaving group. Methyl chloride is prepared commercially by a similar process (using HCl as the source of H$^+$ and Cl$^-$):

$$\text{CH}_3\text{OH} + \text{HCl} \rightarrow \text{CH}_3\text{Cl}$$
Proton Transfer at the End of an SN2 Process

A proton transfer will occur at the end of an SN2 process if the nucleophile is neutral. For example, consider the following solvolysis reaction:

![Proton transfer](image)

The substrate is primary, and therefore, the reaction must proceed via an SN2 process. In this case, the solvent (ethanol) is functioning as the nucleophile, so this is a solvolysis reaction. Since the nucleophile is neutral, a proton transfer is required at the end of the mechanism in order to remove the positive charge from the compound.

Proton Transfer Before and After an SN2 Process

Throughout this course, we will see other examples of SN2 processes that are accompanied by proton transfers. For example, the following reaction will be explored in Sections 9.16 and 14.10:

![Proton transfer](image)

This reaction involves two proton transfer steps—one before and one after the SN2 attack—as seen in Mechanism 7.2.

MECHANISM 7.2 THE SN2 PROCESS

One concerted step

![Nuc attack + loss of LG](image)

An SN2 process is comprised of just one concerted step in which the nucleophile attacks with simultaneous loss of the leaving group.
Possible additional steps

If the leaving group is an OH group, it must be protonated before it can leave.

If the nucleophile is neutral, a proton transfer is required to remove the positive charge that is generated.

SKILLBUILDER

7.7 DRAWING THE COMPLETE MECHANISM OF AN S_N2 PROCESS

LEARN the skill

Ethyl bromide was dissolved in water and heated, and the following solvolysis reaction was observed to occur slowly, over a long period of time. Propose a mechanism for this reaction.

\[
\text{Br} + \text{H}_2\text{O} \rightarrow \text{OH}
\]

SOLUTION

The substrate is primary, so the reaction must proceed via an S_N2 process, rather than S_N1. An S_N1 mechanism cannot be invoked in this case, because a primary carbocation would be too unstable to form.

In an S_N2 process, there is one concerted step, and we must determine whether a proton transfer will be necessary either before or after the concerted step:

- **Does the LG need to be protonated first?**
 - **No.** Bromide is a good LG.

The mechanism does not require a proton transfer before the concerted step, and even if it did, the reagents are not acidic and could not donate a proton anyway. In order to have a proton transfer at the beginning of a mechanism, an acid is required to serve as a proton source. At the end of the mechanism, there will be a proton transfer because the attacking nucleophile (H_2O) is neutral. Therefore, the mechanism will have two steps:

1. **Nuc attack + loss of LG**
2. **Proton transfer**

The first step involves a simultaneous nucleophilic attack and loss of leaving group, and the second step is a proton transfer:
7.24 Draw the mechanism for each of the following solvolysis reactions:

(a) \(\text{MeCl} \quad \text{MeOH (solvolysis)} \rightarrow \text{MeMe} \)

(b) \(\text{Br} \quad \text{EtOH (solvolysis)} \rightarrow \text{MeO} \)

(c) \(\text{I} \quad \text{H}_2\text{O (solvolysis)} \rightarrow \text{MeOH} \)

(d) \(\text{Cl} \quad \text{solvolysis} \rightarrow \text{MeO} \)

7.25 In Chapter 23, we will learn that treatment of ammonia with excess methyl iodide produces a quaternary ammonium salt. This transformation is the result of four sequential \(S_N2 \) reactions. Use the tools we have learned in this chapter to draw the mechanism of this transformation. Your mechanism should have seven steps.

\[
\text{NH}_3 + \text{MeI} \quad \text{MeN} \quad \text{MeN} \quad \text{MeN} \quad \text{MeN}
\]

Quaternary ammonium salt

7.8 Determining Which Mechanism Predominates

In order to draw the products of a specific substitution reaction, we must first identify the reaction mechanism as either \(S_N2 \) or \(S_N1 \). This information is important in the following two ways:

- If substitution is taking place at a chirality center, then we must know whether to expect inversion of configuration (\(S_N2 \)) or racemization (\(S_N1 \)).
- If the substrate is susceptible to carbocation rearrangement, then we must know whether to expect rearrangement (\(S_N1 \)) or whether rearrangement is not possible (\(S_N2 \)).

Four factors have an impact on whether a particular reaction will occur via an \(S_N2 \) or an \(S_N1 \) mechanism: (1) the substrate, (2) the leaving group, (3) the nucleophile, and (4) the solvent (Figure 7.25). We must learn to look at all four factors, one by one, and to determine whether the factors favor \(S_N1 \) or \(S_N2 \).

The Substrate

The identity of the substrate is the most important factor in distinguishing between \(S_N2 \) and \(S_N1 \). Earlier in the chapter, we saw different trends for \(S_N2 \) and \(S_N1 \) reactions. These trends are compared in the charts in Figure 7.26.

The trend in \(S_N2 \) reactions is due to issues of steric hindrance in the transition state, while the trend in \(S_N1 \) reactions is due to carbocation stability. The bottom line is that methyl and primary substrates favor \(S_N2 \), while tertiary substrates favor \(S_N1 \). Secondary substrates can proceed via either mechanism, so a secondary substrate does not indicate which mechanism will predominate. In such a case, you must move on to the next factor, the nucleophile (covered in the next section).
Allylic halides and benzylic halides can react either via SN2 or via SN1 processes:

These substrates can react via an SN2 mechanism because they are relatively unhindered, and they can react via an SN1 mechanism because loss of a leaving group generates a resonance-stabilized carbocation:

\[
\text{Resonance stabilized}
\]

In contrast, vinyl halides and aryl halides are unreactive in substitution reactions:

S_N2 reactions are generally not observed at sp^2-hybridized centers, because back-side attack is sterically encumbered. In addition, vinyl halides and aryl halides are also unreactive toward S_N1, because loss of a leaving group would generate an unstable carbocation:

To summarize:
- Methyl and primary substrates favor S_N2.
- Tertiary substrates favor S_N1.
- Secondary substrates and allylic and benzylic substrates can react via either mechanism.
- Vinyl and aryl substrates do not react via either mechanism.

CONCEPTUAL CHECKPOINT

7.26 Identify whether each of the following substrates favors S_N2, S_N1, both, or neither:

(a) \(\text{Br} \) (b) \(\text{Cl} \) (c) \(\text{Br} \)
(d) \(\text{Br} \) (e) \(\text{I} \) (f) \(\text{Br} \) (g) \(\text{Br} \)
The Nucleophile

Recall that the rate of an S_N2 process is dependent on the concentration of the nucleophile. For the same reason, S_N2 processes are also dependent on the strength of the nucleophile. A strong nucleophile will speed up the rate of an S_N2 reaction, while a weak nucleophile will slow down the rate of an S_N2 reaction. In contrast, an S_N1 process is not affected by the concentration or strength of the nucleophile because the nucleophile does not participate in the rate-determining step (remember the hourglass analogy from Section 7.5). In summary, the nucleophile has the following effect on the competition between S_N2 and S_N1:

- A strong nucleophile favors S_N2.
- A weak nucleophile disfavors S_N2 (and thereby allows S_N1 to compete successfully).

We must therefore learn to identify nucleophiles as strong or weak. The strength of a nucleophile is determined by many factors that were first discussed in Section 6.7. Figure 7.27 shows some strong and weak nucleophiles that we will encounter.

Common nucleophiles

<table>
<thead>
<tr>
<th>Strong</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>I^-</td>
<td>F^-</td>
</tr>
<tr>
<td>Br^-</td>
<td>H_2O</td>
</tr>
<tr>
<td>Cl^-</td>
<td>RO</td>
</tr>
<tr>
<td>H_2S</td>
<td>$\text{N}≡\text{C}$</td>
</tr>
<tr>
<td>RSH</td>
<td>ROH</td>
</tr>
</tbody>
</table>

The Leaving Group

Both S_N1 and S_N2 mechanisms are sensitive to the identity of the leaving group. If the leaving group is bad, then neither mechanism can operate, but S_N1 reactions are generally more sensitive to the leaving group than S_N2 reactions. Why? Recall that the rate-determining step of an S_N1 process is loss of a leaving group to form a carbocation and a leaving group:

We have already seen that the rate of this step is very sensitive to the stability of the carbocation, but it is also sensitive to the stability of the leaving group. The leaving group must be highly stabilized in order for an S_N1 process to be effective.

What determines the stability of a leaving group? As a general rule, good leaving groups are the conjugate bases of strong acids. For example, iodide (I^-) is the conjugate base of a very strong acid (HI):

Iodide is a very weak base because it is highly stabilized. As a result, iodide can function as a good leaving group. In fact, iodide is one of the best leaving groups. Figure 7.28 shows a list of good leaving groups, all of which are the conjugate bases of strong acids. In contrast, hydroxide
is a bad leaving group, because it is not a stabilized base. In fact, hydroxide is a relatively strong base, and therefore, it rarely functions as a leaving group. It is a bad leaving group.

The most commonly used leaving groups are halides and sulfonate ions (Figure 7.29). Among the halides, iodide is the best leaving group because it is a weaker base (more stable) than bromide or chloride. Among the sulfonate ions, the best leaving group is the triflate group, but the most commonly used is the tosylate group. It is abbreviated as OTs. When you see OTs connected to a compound, you should recognize the presence of a good leaving group.

FIGURE 7.28
The conjugate base of a strong acid will generally be a good leaving group. The conjugate base of a weak acid will not be a good leaving group.

FIGURE 7.29
Common leaving groups.

<table>
<thead>
<tr>
<th>Acid</th>
<th>Conjugate base</th>
</tr>
</thead>
<tbody>
<tr>
<td>I⁻</td>
<td>I⁻</td>
</tr>
<tr>
<td>Br⁻</td>
<td>Br⁻</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>O₃S⁻</td>
<td>O₃S⁻</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>H₂O⁻</td>
</tr>
<tr>
<td>HNH</td>
<td>HNH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acid</th>
<th>pKₐ</th>
<th>Conjugate base</th>
</tr>
</thead>
<tbody>
<tr>
<td>I⁻</td>
<td>−11</td>
<td>I⁻</td>
</tr>
<tr>
<td>Br⁻</td>
<td>−9</td>
<td>Br⁻</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>−7</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>O₃S⁻</td>
<td>−3</td>
<td>O₃S⁻</td>
</tr>
<tr>
<td>H₂O⁻</td>
<td>−2</td>
<td>H₂O⁻</td>
</tr>
<tr>
<td>HNH</td>
<td>38</td>
<td>HNH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halides</th>
<th>Sulfonate ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I⁻</td>
<td>H₃C-S-O⁻</td>
</tr>
<tr>
<td>Br⁻</td>
<td>H₃C-S-O⁻</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>F₃C-S-O⁻</td>
</tr>
<tr>
<td>Iodide</td>
<td>Tosylate</td>
</tr>
<tr>
<td>Bromide</td>
<td>Mesylate</td>
</tr>
<tr>
<td>Chloride</td>
<td>Triflate</td>
</tr>
</tbody>
</table>
CONCEPTUAL CHECKPOINT

7.28 Consider the structure of the compound below.

(a) Identify each position where an S_N2 reaction is likely to occur.

(b) Identify each position where an S_N1 reaction is likely to occur.

![Compound Structure](image)

Solvent Effects

The choice of solvent can have a profound effect on the rates of S_N1 and S_N2 reactions. We will focus specifically on the effects of polar protic and polar aprotic solvents. **Polar protic solvents** contain at least one hydrogen atom connected directly to an electronegative atom. **Polar aprotic solvents** contain no hydrogen atoms connected directly to an electronegative atom. These two different kinds of solvents have different effects on the rates of S_N1 and S_N2 processes. Table 7.2 summarizes these effects.

The bottom line is that polar protic solvents are used for S_N1 reactions, while polar aprotic solvents are used to favor S_N2 reactions.

The effect of polar aprotic solvents on the rate of S_N2 reactions is significant. For example, consider the reaction between bromobutane and an azide ion:

$$\text{Br} + \text{N}_3^- \rightarrow \text{N}_3 + \text{Br}^-$$

Azide

The rate of this reaction is highly dependent on the choice of solvent. Figure 7.30 shows the relative rates of this S_N2 reaction in various solvents. From these data, we see that S_N2 reactions are significantly faster in polar aprotic solvents than in polar protic solvents.

![Relative Rates](image)

CONCEPTUAL CHECKPOINT

7.29 Does each of the following solvents favor an S_N2 reaction or an S_N1 reaction? (See Table 7.2)

(a) ![OH](image)

(b) ![S](image)

(c) ![CO](image)

(d) ![H](image)

(e) ![MeOH](image)

(f) ![CH$_3$CN](image)

(g) ![HMPA](image)

(h) ![NH$_3$](image)

7.30 When used as a solvent, will acetone favor an S_N2 or an S_N1 mechanism? Explain.
TABLE 7.2 THE EFFECTS OF POLAR PROTIC SOLVENTS AND POLAR APROTIC SOLVENTS

<table>
<thead>
<tr>
<th>POLAR PROTIC</th>
<th>POLAR APROTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Polar protic solvents contain at least one hydrogen atom connected directly to an electronegative atom.</td>
</tr>
<tr>
<td>Examples</td>
<td>Water, MeOH, EtOH, Acetic acid, Ammonia</td>
</tr>
<tr>
<td>Function</td>
<td>Polar protic solvents stabilize cations and anions. Cations are stabilized by lone pairs from the solvent, while anions are stabilized by H-bonding interactions with the solvent: The lone pairs on the oxygen atoms of H₂O stabilize the cation. As a result, anions and cations are both solvated and surrounded by a solvent shell.</td>
</tr>
<tr>
<td>Effects</td>
<td>Favors S_{N1}. Polar protic solvents favor S_{N1} by stabilizing polar intermediates and transition states:</td>
</tr>
</tbody>
</table>

Free energy (G)

Reaction coordinate
The choice of solvent can also have an impact on the order of reactivity of the halides. If we compare the nucleophilicity of the halides, we find that it is dependent on the solvent. In polar protic solvents, the following order is observed:

\[\text{I}^- > \text{Br}^- > \text{Cl}^- > \text{F}^- \]

Iodide is the strongest nucleophile, and fluoride is the weakest. However, in polar aprotic solvents, the order is reversed:

\[\text{F}^- > \text{Cl}^- > \text{Br}^- > \text{I}^- \]

Why the reversal of order? Fluoride is the strongest because it is the least stable anion. In polar protic solvents, fluoride is the most tightly bound to its solvent shell and is the least available to function as a nucleophile (it would have to shed part of its solvent shell, which it does not do often). In such an environment, it is a weak nucleophile. However, when a polar aprotic solvent is used, there is no solvent shell, and fluoride is free to function as a strong nucleophile.

Summary of Factors Affecting S_N2 and S_N1 Mechanisms

Table 7.3 summarizes what we have learned in this section about the four factors that affect S_N2 and S_N1 processes. Now let’s get some practice analyzing all four factors:

<table>
<thead>
<tr>
<th>TABLE 7.3 FACTORS THAT FAVOR S_N2 AND S_N1 PROCESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR</td>
</tr>
<tr>
<td>Substrate</td>
</tr>
<tr>
<td>Nucleophile</td>
</tr>
<tr>
<td>Leaving group</td>
</tr>
<tr>
<td>Solvent</td>
</tr>
</tbody>
</table>

SKILLBUILDER

7.8 DETERMINING WHETHER A REACTION PROCEEDS VIA AN S_N1 OR S_N2 MECHANISM

LEARN the skill

Determine whether the following reaction proceeds via an S_N1 or an S_N2 mechanism, and then draw the product(s) of the reaction:

\[
\text{Br} \quad \text{NaSH} \quad \text{DMSO} \quad ?
\]

SOLUTION

Analyze the four factors one by one:

(a) **Substrate.** The substrate is secondary. If it were primary, we would predict S_N2, and if it were tertiary, we would predict S_N1. But with a secondary substrate, it could be either, so we move on to the next factor.

(b) **Nucleophile.** NaSH indicates that the nucleophile is HS^- (remember that Na^+ is just the counter ion). HS^- is a strong nucleophile, which favors S_N2.

(c) **Leaving Group.** Br^- is a good leaving group. This factor alone does not indicate a preference for either S_N1 or S_N2.

(d) **Solvent.** DMSO is a polar aprotic solvent, which favors S_N2.

Weighing all four factors, there is a preference for S_N2 because both the nucleophile and the solvent favor S_N2. Therefore, we expect inversion of configuration:
7.9 Selecting Reagents to Accomplish Functional Group Transformation

As mentioned at the beginning of the chapter, substitution reactions can be utilized to accomplish functional group transformation:

A wide range of nucleophiles can be used, providing a great deal of versatility in the type of products that can be formed with substitution reactions. Figure 7.31 shows some of the types of compounds that can be synthesized using substitution reactions. When selecting reagents for a substitution reaction, remember the following tips:

- **Substrate.** The identity of the substrate indicates which mechanism to use. If the substrate is methyl or primary, the reaction must proceed via an \(S_N^2 \) process. If the substrate is tertiary, the reaction must proceed via an \(S_N^1 \) process. If the substrate is secondary, generally try to use an \(S_N^2 \) process because it avoids the issue of carbocation rearrangement and provides greater control over the stereochemical outcome.

- **Nucleophile and Solvent.** Once you have decided whether you want to use an \(S_N^1 \) or an \(S_N^2 \) mechanism (based on the substrate), make sure to choose a nucleophile and solvent that are consistent with that mechanism. For an \(S_N^1 \) reaction, use a weak nucleophile in a polar protic solvent. For an \(S_N^2 \) reaction, use a strong nucleophile in a polar aprotic solvent.
Leaving Group. Remember that OH is a bad leaving group and will not leave as is. It must first be converted into a good leaving group. In an S_N1 process, use an acid to protonate the OH group, converting it into an excellent leaving group. In an S_N2 reaction, the OH group is generally converted into a tosylate, an excellent leaving group, rather than protonating the OH group. This transformation is accomplished with tosyl chloride and pyridine (and is discussed in more detail in Chapter 13):

\[
\text{OH} \quad \xrightarrow{TsCl, \text{pyridine}} \quad \text{OTs}
\]

SOLUTION

First determine which mechanism to use by looking at the substrate:
(a) **Substrate.** The substrate is secondary, so it could go either way. In general, choose S_N2, because it gives greater control. In this particular case, an S_N2 pathway must be used because the product is formed only through inversion of configuration. Now choose reagents that favor S_N2.

(b) **Leaving Group.** The OH is a bad leaving group and must be converted into a better leaving group. When performing an S_N2 reaction, the OH should be converted into a tosylate by using TsCl and pyridine:
Notice that the stereoisomerism does not change when the OH group is converted into a tosylate group. If the OH is on a wedge, then the tosylate group will also be on a wedge.

(c) *Nucleophile.* In order to accomplish the desired transformation, the nucleophile needs to be cyanide (CN⁻). Cyanide is a strong nucleophile, which supports an SN₂ process.

(d) *Solvent.* In order to favor an SN₂ process, a polar aprotic solvent such as DMSO should be used:

\[
\begin{align*}
\text{OH} & \quad \text{CN} \\
\text{1) TsCl, pyridine} & \quad \text{2) NaCN / DMSO}
\end{align*}
\]

Notice that the conversion of the OH into a tosylate and the SN₂ reaction are two separate synthetic steps, so we place the numbers 1 and 2 before the sets of reagents to indicate that they are separate reactions.

PRACTICE the skill 7.33 Identify the reagents you would use to accomplish each of the following transformations:

(a) \(\text{I} \rightarrow \text{OH} \)

(b) \(\text{OH} \rightarrow \text{I} \)

(c) \(\text{Br} \rightarrow \text{SH} \)

(d) \(\text{OH} \rightarrow \text{Br} \)

(e) \(\text{Br} \rightarrow \text{O} \)

(f) \(\text{OH} \rightarrow \text{Br} \)

(g) \(\text{I} \rightarrow \text{O} \)

(h) \(\text{Br} \rightarrow \text{OH} \)

APPLY the skill 7.34 What reagents would you use to accomplish a substitution with retention of configuration, for example:

\[
\begin{align*}
\text{OH} & \quad \text{SH} \\
(R)-2-\text{Butanol} & \quad (R)-2-\text{Butanethiol}
\end{align*}
\]

need more PRACTICE? Try Problems 7.59, 7.60, 7.63
Chlorambucil was designed by chemists using principles that we have learned in this and previous chapters. The story of chlorambucil begins with a toxic compound called sulfur mustard.

This compound was first used as a chemical weapon in World War I. It was sprayed as an aerosol mixture with other chemicals and exhibited a characteristic odor similar to that of mustard plants, thus the name *mustard gas*. Sulfur mustard is a powerful alkylating agent. The mechanism of alkylation involves a sequence of two S_N2 reactions:

The first substitution reaction is an intramolecular S_N2 process in which a lone pair on the sulfur serves as a nucleophile, expelling chloride as a leaving group. The second reaction is another S_N2 process involving attack of an external nucleophile. The net result is the same as if the nucleophile had attacked directly:

The reaction occurs much more rapidly than a regular S_N2 process on a primary alkyl chloride because the sulfur atom assists in ejecting chloride as a leaving group. The effect that sulfur has on the rate of reaction is called *anchimeric assistance*.

Each molecule of sulfur mustard has two chloride ions and is, therefore, capable of alkylating DNA two times. This causes individual strands of DNA to cross-link (Figure 7.32). Cross-linking of DNA prevents the DNA from replicating and ultimately leads to cell death. The profound impact of sulfur mustard on cell function inspired research on the use of this compound as an antitumor agent. In 1931, sulfur mustard was injected directly into tumors with the intention of stopping tumor growth by interrupting the rapid division of the cancerous cells. Ultimately, sulfur mustard was found to be too toxic for clinical use, and the search began for a similar, less toxic, compound. The first such compound to be produced was a nitrogen analogue called mechlorethamine:

Mechlorethamine is a “nitrogen mustard” that reacts with nucleophiles in the same way as sulfur mustard, via two successive substitution reactions. The first reaction is an intramolecular S_N2 process involving anchimeric assistance from the nitrogen atom; the second reaction is another S_N2 process involving attack of an external nucleophile:

This nitrogen mustard is also capable of alkylating DNA, causing cell death, but is less toxic than sulfur mustard. The discovery of mechlorethamine launched the field of chemotherapy, the use of chemical agents to treat cancer.

Mechlorethamine is still in use today, in combination with other agents, for the treatment of advanced Hodgkin’s lymphoma and chronic lymphocytic leukemia (CLL). The use of mechlorethamine is limited, though, by its high rate of reactivity with water. This limitation led to a search for other analogues. Specifically, it was found that replacing the methyl group with an aryl group had

FIGURE 7.32
Sulfur mustard can alkylate two different strands of DNA, causing cross-linking.
the effect of delocalizing the lone pair through resonance, rendering the lone pair less nucleophilic:

The resonance structures above all exhibit a negative charge on a carbon atom, and therefore, these resonance structures do not contribute very much to the overall resonance hybrid. Nevertheless, they are valid resonance structures, and they do contribute some character. As a result, the lone pair on the nitrogen atom is delocalized (it is spread out over the aryl group) and less nucleophilic. This decreased nucleophilicity is manifested in a slower rate of anchimeric assistance from the nitrogen atom. The compound can still function as an antitumor agent, but its rate of reactivity with water is reduced.

Introduction of the aryl group (in place of the methyl group) might have solved one problem, but it created another problem. Specifically, this new compound was not water soluble, which prevented intravenous administration. This problem was solved by introducing a carboxylate group, which rendered the compound water soluble:

But, once again, solving one problem created another. Now, the lone pair on the nitrogen atom was too delocalized, because of the following resonance structure:

The lone pair was delocalized onto an oxygen atom, and a negative charge on an oxygen atom is much more stable than a negative charge on a carbon atom. The delocalization effect was so pronounced that the reagent no longer functioned as an antitumor agent. The lone pair on the nitrogen atom was not sufficiently nucleophilic to participate in anchimeric assistance at an appreciable rate. Solving all these problems required a way to maintain water solubility without overly stabilizing the lone pair on the nitrogen atom. This was achieved by placing methylene groups (CH₂ groups) between the carboxylate group and the aryl group:

This way, the nitrogen lone pair is no longer participating in resonance with the carboxylate group, but the presence of the carboxylate group is still able to render the compound water soluble. This final change solves all of the problems. In theory, only one methylene group is needed to ensure that the nitrogen lone pair is not overly delocalized by resonance. But in practice, research with various compounds indicated that optimal reactivity was achieved when three methylene groups were placed between the carboxylate group and the aryl group:

The resulting compound, called chlorambucil, was marketed under the trade name Lukeran™ by GlaxoSmithKline. It was mainly used for treatment of CLL, until other, more powerful agents were discovered.

The design and development of chlorambucil is just one example of drug design, but it demonstrates how an understanding of pharmacology, coupled with an understanding of the first principles of organic chemistry, enables chemists to design and create new drugs. Each year, organic chemists and biochemists make enormous strides in the exciting fields of pharmacology and drug design.

CONCEPTUAL CHECKPOINT

7.35 Melphalan is a chemotherapy drug used in the treatment of multiple myeloma and ovarian cancer. Melphalan is an alkylating agent belonging to the nitrogen mustard family. Draw a likely mechanism for the alkylation process that occurs when a nucleophile reacts with melphalan:
SECTION 7.1
- **Substitution reactions** exchange one functional group for another.
- The electrophile is called the **substrate**, and it must contain a **leaving group**.

SECTION 7.2
- There are two ways to name halogenated organic compounds. The systematic name treats the compound as a **haloalkane**, while the common name treats the compound as an **alkyl halide**.
- The **alpha (α) position** is the carbon atom connected directly to the halogen, while the **beta (β) positions** are the carbon atoms connected to the α position.
- Alkyl halides are classified as **primary**, **secondary**, and **tertiary** according to the number of alkyl groups connected to the α position.

SECTION 7.3
- In a **concerted process**, nucleophilic attack and loss of the leaving group occur simultaneously.
- In a **stepwise process**, first the leaving group leaves, and then the nucleophile attacks.

SECTION 7.4
- Evidence for the concerted mechanism, called **SN2**, includes the observation of a **second-order** rate equation. The SN2 process is said to be **bimolecular**.
- Methyl halides and primary alkyl halides react most quickly, while tertiary alkyl halides are essentially unreactive toward SN2.
- When the α position is a chirality center, the reaction proceeds with **inversion of configuration**. The preference for **back-side attack** stems from the need for constructive overlap of orbitals (according to MO theory). SN2 reactions are said to be **stereospecific** because the configuration of the product is determined by the configuration of the substrate.

SECTION 7.5
- Evidence for the stepwise mechanism, called **SN1**, includes the observation of a **first-order** rate equation. These reactions are said to be **unimolecular**.
- The first step of an SN1 process (loss of a leaving group) is the **rate-determining step**.
- The carbocation intermediate can be attacked from either side, leading to **inversion of configuration** and retention of configuration. There is usually a slight preference for inversion due to the formation of ion pairs.
SECTION 7.6
- A proton transfer is necessary at the beginning of an S_N1 mechanism if the leaving group is an OH group.
- A carbocation rearrangement can take place if it will lead to a more stable carbocation intermediate.
- A proton transfer is necessary at the end of an S_N1 mechanism if the nucleophile is neutral (not negatively charged).
- When the solvent functions as a nucleophile, the reaction is called a solvolysis reaction.

SECTION 7.7
- A proton transfer is necessary at the beginning of an S_N2 mechanism if the leaving group is an OH group.
- A proton transfer must occur at the end of an S_N2 mechanism if the nucleophile is neutral.

SECTION 7.8
- There are four factors that impact the competition between the S_N2 mechanism and S_N1: (1) the substrate, (2) the nucleophile, (3) the leaving group, and (4) the solvent.
- The most common leaving groups are halides and sulfonate ions. Of the sulfonate ions, the most common is the tosylate group.
- Polar protic solvents favor S_N1, while polar aprotic solvents favor S_N2.

SECTION 7.9
- Depending on the type of nucleophile used, substitution reactions can be used to produce a wide range of different compounds.

KEY TERMINOLOGY

<table>
<thead>
<tr>
<th>alkyll halide</th>
<th>284</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha (α) position</td>
<td>284</td>
</tr>
<tr>
<td>back-side attack</td>
<td>291</td>
</tr>
<tr>
<td>beta (β) position</td>
<td>284</td>
</tr>
<tr>
<td>bimolecular</td>
<td>290</td>
</tr>
<tr>
<td>first-order</td>
<td>297</td>
</tr>
<tr>
<td>haloalkane</td>
<td>284</td>
</tr>
</tbody>
</table>

inversion of configuration	291
leaving group	282
organohalide	284
polar aprotic solvent	318
polar protic solvent	318
primary alkyl halide	284
rate-determining step	298
retention of configuration	301
secondary alkyl halide	284
second-order	290
S_N1	297
S_N2	290
solvolysis	305
stereospecific	291
substitution reaction	282
substrate	282
sulfonate ions	317
tertiary alkyl halide	284
tosylate	317
unimolecular	297

SKILLBUILDER REVIEW

7.1 DRAWING THE CURVED ARROWS OF A SUBSTITUTION REACTION

CONCERTED MECHANISM Two curved arrows drawn in one step. Nucleophilic attack is accompanied by simultaneous loss of a leaving group.

STEPWISE MECHANISM Two curved arrows drawn in two separate steps. Leaving group leaves to form a carbocation intermediate, followed by a nucleophilic attack.

Try Problems 7.2–7.5, 7.64a

7.2 DRAWING THE PRODUCT OF AN S_N2 PROCESS

Replace the LG with the Nuc, and draw inversion of configuration.

Try Problems 7.7, 7.8, 7.45, 7.56, 7.61
7.3 Drawing the Transition State of an S_N2 Process

Example Draw the transition state.

Step 1 Identify the nucleophile and the leaving group.

Step 2 Draw the carbon atom with the nucleophile and leaving group on either side.

Step 3 Draw the three groups attached to the carbon atom. Place brackets and the symbol indicating a transition state.

7.4 Drawing the Carbocation Intermediate of an S_N1 Process

Step 1 Identify the leaving group.

Step 2 Draw all three groups pointing away from each other.

7.5 Drawing the Products of an S_N1 Process

Example Predict the products.

Step 1 Identify the nucleophile and the leaving group.

Step 2 Replace the leaving group with the nucleophile.

Step 3 If chirality center, then S_N1 will produce a pair of enantiomers.

7.6 Drawing the Complete Mechanism of an S_N1 Process

There are two core steps (gray) and three possible additional steps (blue).

- Proton transfer
- Loss of LG
- Carbocation rearrangement
- Nuc attack
- Proton transfer

Does the LG need to be protonated before it can leave? If OH group, then yes.

Is the nucleophile ultimately positioned at a different location than the leaving group? If yes, then there will be a carbocation rearrangement.

Is the nucleophile neutral? If yes, then there will be a proton transfer at the end of the mechanism in order to remove the positive charge.

Try Problems 7.9–7.11, 7.46, 7.64e

Try Problems 7.14, 7.15, 7.50, 7.51

Try Problems 7.16, 7.17, 7.54b

Try Problems 7.21, 7.22, 7.23, 7.48, 7.49, 7.52, 7.54, 7.65
7.7 DRAWING THE COMPLETE MECHANISM OF AN SN₂ PROCESS

There is one core step (concerted) and two possible additional steps.

Does the LG need to be protonated first? If OH group, then yes.

Is the nucleophile neutral? If yes, then there will be a proton transfer at the end of the mechanism in order to remove the positive charge.

Try Problems 7.24, 7.25, 7.53, 7.64, 7.66

7.8 DETERMINING WHETHER A REACTION PROCEEDS VIA AN SN₁ MECHANISM OR AN SN₂ MECHANISM

<table>
<thead>
<tr>
<th>RELEVANT FACTORS</th>
<th>S_N₂</th>
<th>S_N₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Methyl or primary</td>
<td>Tertiary</td>
</tr>
<tr>
<td>Nuc</td>
<td>Strong Nuc</td>
<td>Weak Nuc</td>
</tr>
<tr>
<td>LG</td>
<td>Good LG</td>
<td>Excellent LG</td>
</tr>
<tr>
<td>Solvent</td>
<td>Polar aprotic</td>
<td>Polar protic</td>
</tr>
</tbody>
</table>

EXAMPLE

Favors SN₂

Try Problems 7.31, 7.32, 7.37, 7.38, 7.40, 7.41, 7.44, 7.55, 7.57, 7.58

7.9 IDENTIFYING THE REAGENTS NECESSARY FOR A SUBSTITUTION REACTION

EXAMPLE

STEP 1 Analyze the substrate and the stereochemistry.

STEP 2 Analyze the LG.

STEP 3 Use conditions that favor SN₂: strong Nuc (NaCN) and a polar aprotic solvent (DMSO).

Reagents:
1. TsCl, pyridine
2. NaCN, DMSO

Try Problems 7.33, 7.34, 7.59, 7.60, 7.63

PRACTICE PROBLEMS

7.36 List the systematic name and common name for each of the following compounds:

(a) Cl (b) Br (c) I

7.37 Draw all isomers of C₄H₃I, and then arrange them in order of increasing reactivity toward an SN₂ reaction.
7.38 For each of the following pairs of compounds, identify which compound would react more rapidly in an S_N2 reaction. Explain your choice in each case.

(a) \(\text{Cl-} \) \(\text{Cl} \) (b) \(\text{Br-} \) \(\text{Br} \) (c) \(\text{Cl-} \) \(\text{Cl} \) (d) \(\text{Br-} \) \(\text{I} \)

7.39 In Chapter 10, we will see that an acetylide ion (formed by treatment of acetylene with a strong base) can serve as a nucleophile in an S_N2 reaction:

\[
\text{H-C≡C-H \text{Strong base} \rightarrow H-C≡C-R} \quad \text{H-C≡C-R}
\]

This reaction provides a useful method for making a variety of substituted alkynes. Determine whether this process can be used to make the following alkyne. Explain your answer.

7.40 Identify the stronger nucleophile:
(a) \(\text{NaSH vs. H}_2\text{S} \) (c) Methoxide dissolved in methanol vs. methoxide dissolved in water
(b) Sodium hydroxide vs. water

7.41 For each pair of the following compounds, identify which compound would react more rapidly in an S_N1 reaction. Explain your choice in each case.

(a) \(\text{Cl-} \) \(\text{Cl} \) (b) \(\text{Br-} \) \(\text{Br} \) (c) \(\text{Cl-} \) \(\text{I} \) (d) \(\text{Cl-} \) \(\text{OTs} \)

7.42 Consider the following reaction:

\[
\text{Br-} \quad \text{NaCN} \quad \text{DMSO} \quad \text{CN-} \quad \text{NaBr}
\]

(a) How would the rate be affected if the concentration of the alkyl halide is doubled?
(b) How would the rate be affected if the concentration of sodium cyanide is doubled?

7.43 Consider the following reaction:

\[
\text{OH-} \quad \text{HBr} \quad \text{Br-} \quad \text{H}_2\text{O}
\]

(a) How would the rate be affected if the concentration of the alcohol is doubled?
(b) How would the rate be affected if the concentration of HBr is doubled?

7.44 Classify each of the following solvents as protic or aprotic:
(a) DMF (c) DMSO (e) Ammonia
(b) Ethanol (d) Water

7.45 Consider the following S_N2 reaction:

\[
\text{Br-} \quad \text{NaCN} \quad \text{DMSO} \quad \text{CN-} \quad \text{Br-}
\]

(a) Assign the configuration of the chirality center in the substrate.
(b) Assign the configuration of the chirality center in the product.
(c) Does this S_N2 process proceed with inversion of configuration? Explain.

7.46 Draw the transition state for the reaction between ethyl iodide and sodium acetate

7.47 (S)-2-Iodopentane undergoes racemization in a solution of sodium iodide in DMSO. Explain.

7.48 When the following optically active alcohol is treated with HBr, a racemic mixture of alkyl bromides is obtained:

\[
\text{OH-} \quad \text{HBr} \quad \text{Br-} \quad \text{H}_2\text{O}
\]

Draw the mechanism of the reaction, and explain the stereochemical outcome.

7.49 (R)-2-Pentanol racemizes when placed in dilute sulfuric acid. Draw a mechanism that explains this stereochemical outcome, and draw an energy diagram of the process.

7.50 List the following carboxations in order of increasing stability:

7.51 Draw the carboxation intermediate that would be formed if each of the following substrates would participate in an S_N1 reaction. In each case, identify the carboxation as being primary, secondary, or tertiary.

(a) \(\text{Cl-} \) \(\text{Br} \) (b) \(\text{Br-} \) \(\text{I} \) (c) \(\text{Cl-} \) \(\text{Cl} \) (d) \(\text{Cl-} \) \(\text{Cl} \)

7.52 Propose a mechanism for the following transformation:

\[
\text{OH-} \quad \text{HCl} \quad \text{Cl-} \quad \text{H}_2\text{O}
\]

7.53 Draw the mechanism of the following reaction:

\[
\text{Br-} \quad \text{ONa} \quad \text{NaBr}
\]
7.54 Each of the following reactions proceeds via an S_N1 mechanism and will have anywhere from two to five steps, as discussed in Section 7.6. Determine the number of steps for each reaction, and then draw the mechanism in each case:

(a) \(\text{Cl} \xrightarrow{\text{MeOH}} \text{MeOH} + \text{HCl} \)

(b) \(\text{Cl} \xrightarrow{\text{NaSH}} \text{SH} + \text{NaCl} \)

(c) \(\text{OH} \xrightarrow{\text{HI}} \text{I} + \text{H}_2\text{O} \)

(d) \(\text{OTs} \xrightarrow{\text{EtOH}} \text{OTs} + \text{TsOH} \)

7.55 Identify the product(s) in each of the following reactions:

(a) \(\text{Br} \xrightarrow{\text{EtOH}} ? \)

(b) \(\text{OH} \xrightarrow{\text{NaBr}} ? \)

(c) \(\text{HCl} \xrightarrow{\text{NaCN}} ? \)

(d) \(\text{I} \xrightarrow{\text{DMSO}} ? \)

7.56 Identify the product of the following reaction:

\(\text{NaO} \xrightarrow{\text{ONa}} \text{Br} \xrightarrow{\text{Br}} \text{C}_4\text{H}_8\text{O}_2 + 2\text{NaBr} \)

7.57 The following reaction is very slow. Identify the mechanism, and explain why the reaction is so slow.

\(\text{Br} \xrightarrow{\text{NaOH}} \text{OH} \)

7.58 The following reaction is very slow:

(a) Identify the mechanism.
(b) Explain why the reaction is so slow.
(c) When hydroxide is used instead of water, the reaction is very rapid. Draw the mechanism of this reaction, and explain why it is so fast.

7.59 Identify the reagents you would use to achieve each of the following transformations:

(a) \(\xrightarrow{\text{OTS}} \text{OH} \)

(b) \(\xrightarrow{\text{OH}} \text{CN} \)

(c) \(\xrightarrow{\text{OH}} \text{Br} \)

(d) \(\xrightarrow{\text{Cl}} \text{SH} \)

(e) \(\xrightarrow{\text{Br}} \text{O} \)

7.60 Each of the following compounds can be prepared with an alkyl iodide and a suitable nucleophile. In each case, identify the alkyl iodide and the nucleophile that you would use:

(a) \(\xrightarrow{\text{OH}} \text{CO} \)

(b) \(\xrightarrow{\text{CN}} \text{CN} \)

(c) \(\xrightarrow{\text{SH}} \text{SH} \)

7.61 What products would you expect from the reaction between (S)-2-iodobutane and each of the following nucleophiles?

(a) NaSH (b) NaSEt (c) NaCN

7.62 Below are two potential methods for preparing the same ether, but only one of them is successful. Identify the successful approach and explain your choice.

7.63 Identify the reagent you would use to accomplish each of the following transformations:

(a) Cyclobutanol → bromocyclobutane
(b) tert-Butanol → tert-butyl chloride
(c) Ethyl chloride → ethanol
INTEGRATED PROBLEMS

7.64 Consider the following S_N2 reaction:

```
\begin{align*}
\text{Br} & \xrightarrow{NaSH, DMSO} \text{SH} + \text{NaBr} \\
\end{align*}
```

(a) Draw the mechanism of this reaction.
(b) What is the rate equation of this reaction?
(c) What would happen to the rate if the solvent is changed from DMSO to ethanol?
(d) Draw an energy diagram of the reaction above.
(e) Draw the transition state of this reaction.

7.65 Consider the following substitution reaction:

```
\begin{align*}
\text{OH} & \xrightarrow{HBr} \text{Br} + \text{H}_2\text{O} \\
\end{align*}
```

(a) Determine whether this reaction proceeds via an S_N1 or S_N2 process.

7.66 Consider the following substitution reaction:

```
\begin{align*}
\text{Br} & \xrightarrow{NaCN, DMSO} \text{CN} + \text{NaBr} \\
\end{align*}
```

(a) Determine whether this reaction proceeds via an S_N1 or S_N2 process.
(b) Draw the mechanism of this reaction.
(c) What is the rate equation of this reaction?
(d) Would the reaction occur at a faster rate if the concentration of cyanide were doubled?
(e) Draw an energy diagram of the reaction above.

CHALLENGE PROBLEMS

7.67 Propose a mechanism for the following transformation:

```
\begin{align*}
\text{I} & \xrightarrow{\text{H}_2\text{O}} \text{OH} \\
\end{align*}
```

7.68 When the following ester is treated with lithium iodide in DMF, a carboxylate ion is obtained:

```
\begin{align*}
\text{O} & \xrightarrow{\text{LiI, DMF}} \text{O}^- + \text{I}^- \\
\end{align*}
```

(a) Draw the mechanism of this reaction.
(b) When the methyl ester is used as the substrate, the reaction is 10 times faster.

```
\begin{align*}
\text{O} & \xrightarrow{\text{LiI, DMF}} \text{O}^- + \text{MeI} \\
\end{align*}
```

Explain the increase in rate.

7.69 When $(1R,2R)$-2-bromocyclohexanol is treated with a strong base, an epoxide (cyclic ether) is formed. Suggest a mechanism for formation of the epoxide:

```
\begin{align*}
\text{OH} & \xrightarrow{\text{Strong base}} \text{Br} + \text{An epoxide} \\
\end{align*}
```

7.70 When butyl bromide is treated with sodium iodide in ethanol, the concentration of iodide quickly decreases but then slowly returns to its original concentration. Identify the major product of the reaction.

7.71 The following compound can react rapidly via an S_N1 process. Explain why this primary substrate will undergo an S_N1 reaction so rapidly.

```
\begin{align*}
\text{O} & \xrightarrow{\text{OTs}} \text{NaCN, DMSO} \\
\end{align*}
```

7.72 Consider the reaction below. The rate of this reaction is markedly increased if a small amount of sodium iodide is added to the reaction mixture. The sodium iodide is not consumed by the reaction and is therefore considered to be a catalyst. Explain how the presence of iodide can speed up the rate of the reaction.

```
\begin{align*}
\text{Cl} & \xrightarrow{\text{NaCN, DMSO}} \text{CN} + \text{NaBr} \\
\end{align*}
```

7.73 Propose a mechanism for the following transformation: